Balanced Health Today

 Affiliates, Vendors , Doctors

LOGIN HERE

Open 10am to 10pm PST
Call Toll Free: 1.888.449.0552
Home
Articles
Blog
Contact Us
Special Offers
HBOT
Heavy Metal Detox
Chemical Detox
Liver/GallBladder Cleanse
Prostate / Breast Health
 
HYPERBARIC CHAMBER
 
Stroke
Autism
ADD/ADHD
Fibromyalgia
Alzheimer's
Memory Loss
Wounds
Multiple Sclerosis
Cerebral Palsy
Head Injury
Migraines Parkinson's
Insomnia
Crohn's
Diabetes
 

MEDICARDIUM
 
Bacteria Detox
Fungal Detox
Pharmaceuticals
Detoxification
 

XENEPLEX
 
Bacteria Detox
Fungal Detox
Pharmaceuticals
Detoxification
 

GLYTAMINS
 
Liver Detox
Gallbladder Purge
Kidney Cleanse
Kidney
 

ELLAGICA
 
Anti-viral
Anti-bacterial
Anti-fungal
Anti-parasitical
Anti-cancer
Anti-oxidant
Anti-mutagenic
Cardio protective
 

ENDOSTEROL
 
Prostate
Hair Loss
Circulation
Inflammation
Immune System
Female Health
 

VIBRABOARD
 
Pain Relief
Bone Density
Rehabilitation
Strength Training
Massage
Relaxation
Sensory Integration
 

 

Home
 

     Hyperbaric Oxygen Therapy for Reduction of

 

Secondary Brain Damage in Head Injury

 

 

//www.balancedhealthtoday.com/hyperbaric-chamber.html

Hyperbaric Oxygen Therapy

Hyperbaric Brain Trauma

Cerebral contusions are one the most frequent traumatic lesions and the most common indication for secondary surgical decompression. The purpose of this study was to investigate the physiology of perilesional secondary brain damage and evaluate the value of hyperbaric oxygen therapy (HBOT) in the treatment of these lesions. Five groups of five Sprague-Dawley rats each were submitted to dynamic cortical deformation (DCD) induced by negative pressure applied to the cortex. Cerebral lesions produced by DCD at the vacuum site proved to be reproducible. The study protocol entailed the following: (1) DCD alone, (2) DCD and HBOT, (3) DCD and post-operative hypoxia and HBOT, (4) DCD, post-operative hypoxia and HBOT, and (5) DCD and normobaric hyperoxia. Animals were sacrificed after 4 days.

Histological sections showed localized gross tissue loss in the cortex at injury site, along with hemorrhage. In all cases, the severity of secondary brain damage was assessed by counting the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and caspase 3-positive cells in successive perilesional layers, each 0.5 mm thick. Perilesional TUNEL positive cells suggested the involvement of apoptosis in group 1 (12.24% of positive cells in layer 1).

These findings were significantly enhanced by post-operative hypoxia (31.75%, p 0.001). HBOT significantly reduced the severity and extent of secondary brain damage expressed by the number of TUNEL positive cells in each layer and the volume of the lesion (4.7% and 9% of TUNEL positive cells in layer 1 in groups 2 and 4 respectively, p 0.0001 and p < 0.003).

Normobaric hyperoxia also proved to be beneficial although in a lesser extent. This study demonstrates that the vacuum model of brain injury is a reproducible model of cerebral contusion. The current findings also suggest that HBOT may limit the growth of cerebral contusions and justify further experimental studies.

Kiribati, South Tarawa
Suriname, Paramaribo
Warren, Michigan
Hungary, Budapest
Hervey Bay, Queensland
Richmond, California
Richmond, Virginia
Oakland, California
Nepal, Kathmandu
Tacoma Washington USA

//www.balancedhealthtoday.com/products.html
 

 

Chambers To Choose From

Click on the Picture to Go To the Detailed Page

Free Shipping on all chambers w/in the USA

 23" inch Chamber $5,495.00 28" Chamber $9,495.00 28" Military Chamber $5,495.00
  40 inch Chamber $15,995.00 40 inch Vertical  $12,995.00 Flexilite Double Bag Chamber
Double bag Hyperbaric Oxygen Chamber HBOT


PORTABLE HYPERBARIC OXYGEN CHAMBERS

Equipment Financing
Equipment Financing Partner of Balanced Health Today


Balanced Health Today
355 Hukililke Street ( suite 206)
Kahului, Hi 96732
//www.BalancedHealthToday.com
info@BalancedHealthToday.com
888.449.0552